× Сделать запрос
Рекомендуем
|
ГОСТы
Строительный портал / ГОСТы / Сети, автоматизация, безопасность, связь / Национальный стандарт РФ ГОСТ Р 54149-2010 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения Национальный стандарт РФ ГОСТ Р 54149-2010 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения Национальный стандарт РФ ГОСТ Р 54149-2010 |
- | номинальное значение частоты электропитания, Гц; | |
- | отклонение частоты, Гц; | |
- | номинальное напряжение электропитания, В, кВ; | |
- | согласованное напряжение электропитания, В, кВ; | |
- | напряжение, равное номинальному или согласованному напряжению электропитания, В, кВ; | |
- | отрицательное отклонение напряжения электропитания, % ; | |
- | положительное отклонение напряжения электропитания, % ; | |
- | значение основной гармонической составляющей напряжения, В, кВ; | |
- | коэффициент n-й гармонической составляющей напряжения, % ; | |
- | суммарный коэффициент гармонических составляющих напряжения, %; | |
- | коэффициент несимметрии напряжений по обратной последовательности, %; | |
- | коэффициент несимметрии напряжений по нулевой последовательности, %; | |
- | длительность провала (прерывания) напряжения, с; | |
n | - | номер гармонической составляющей напряжения. |
4 Показатели и нормы качества электрической энергии
4.1 Общие положения
Изменения характеристик напряжения электропитания в точке передачи электрической энергии пользователю электрической сети, относящихся к частоте, значениям, форме напряжения и симметрии напряжений в трехфазных системах электроснабжения, подразделяют на две категории - продолжительные изменения характеристик напряжения и случайные события.
Продолжительные изменения характеристик напряжения электропитания представляют собой длительные отклонения характеристик напряжения от номинальных значений и обусловлены, в основном, изменениями нагрузки или влиянием нелинейных нагрузок.
Случайные события представляют собой внезапные и значительные изменения формы напряжения, приводящие к отклонению его параметров от номинальных. Данные изменения напряжения, как правило, вызываются непредсказуемыми событиями (например, повреждениями оборудования пользователя электрической сети) или внешними воздействиями (например, погодными условиями или действиями стороны, не являющейся пользователем электрической сети).
Применительно к продолжительным изменениям характеристик напряжения электропитания, относящихся к частоте, значениям, форме напряжения и симметрии напряжений в трехфазных системах, в настоящем стандарте установлены показатели и нормы КЭ.
Для случайных событий в настоящем стандарте приведены справочные данные (см. приложения А, Б).
4.2 Продолжительные изменения характеристик напряжения
4.2.1 Отклонение частоты
Показателем КЭ, относящимся к частоте, является отклонение значения основной частоты напряжения электропитания от номинального значения, , Гц
, (1)
где - значение основной частоты напряжения электропитания, Гц, измеренное в интервале времени 10 с в соответствии с требованиями ГОСТ Р 51317.4.30, подраздел 5.1;
- номинальное значение частоты напряжения электропитания, Гц.
Номинальное значение частоты напряжения электропитания в электрической сети равно 50 Гц.
Для указанного показателя КЭ установлены следующие нормы:
- отклонение частоты в синхронизированных системах электроснабжения не должно превышать Гц в течение 95% времени интервала в одну неделю и Гц - в течение 100% времени интервала в одну неделю;
- отклонение частоты в изолированных системах электроснабжения с автономными генераторными установками, не подключенных к синхронизированным системам передачи электрической энергии, не должно превышать Гц в течение 95% времени интервала в одну неделю и Гц - в течение 100% времени интервала в одну неделю.
При оценке соответствия электрической энергии нормам КЭ, относящимся к частоте, установленным в настоящем стандарте, должны быть проведены измерения по ГОСТ Р 51317.4.30, класс А, при этом маркированные данные не учитывают.
4.2.2 Медленные изменения напряжения
Медленные изменения напряжения электропитания (как правило, продолжительностью более 1 мин) обусловлены обычно изменениями нагрузки электрической сети.
Показателями КЭ, относящимися к медленным изменениям напряжения электропитания, являются отрицательное и положительное отклонения напряжения электропитания в точке передачи электрической энергии от номинального/согласованного значения, %:
; (2)
, (3)
где , - значения напряжения электропитания, меньшие и большие соответственно, усредненные в интервале времени 10 мин в соответствии с требованиями ГОСТ Р 51317.4.30, подраздел 5.12;
- напряжение, равное стандартному номинальному напряжению или согласованному напряжению .
В электрических сетях низкого напряжения стандартное номинальное напряжение электропитания равно 220 В (между фазным и нейтральным проводниками для однофазных и четырехпроводных трехфазных систем) и 380 В (между фазными проводниками для трех- и четырехпроводных трехфазных систем).
В электрических сетях среднего и высокого напряжений вместо значения номинального напряжения электропитания принимают согласованное напряжение электропитания .
Для указанных выше показателей КЭ установлены следующие нормы: положительные и отрицательные отклонения напряжения в точке передачи электрической энергии не должны превышать 10% номинального или согласованного значения напряжения в течение 100% времени интервала в одну неделю.
Примечание - Установленные нормы медленных изменений напряжения электропитания относятся к 1008 интервалам времени измерений по 10 мин каждый.
Допустимые значения положительного и отрицательного отклонений напряжения в точках общего присоединения должны быть установлены сетевой организацией с учетом необходимости выполнения норм настоящего стандарта в точках передачи электрической энергии.
В электрической сети потребителя должны быть обеспечены условия, при которых отклонения напряжения питания на зажимах электроприемников не превышают установленных для них допустимых значений при выполнении требований настоящего стандарта к КЭ в точке передачи электрической энергии.
При оценке соответствия электрической энергии нормам КЭ, относящимся к медленным изменениям напряжения, установленным в настоящем стандарте, должны быть проведены измерения по ГОСТ Р 51317.4.30, подраздел 5.12, класс А, при этом маркированные данные не учитываются.
4.2.3 Колебания напряжения и фликер
Колебания напряжения электропитания (как правило, продолжительностью менее 1 мин), в том числе одиночные быстрые изменения напряжения, обусловливают возникновение фликера.
Показателями КЭ, относящимися к колебаниям напряжения, являются кратковременная доза фликера , измеренная в интервале времени 10 мин, и длительная доза фликера , измеренная в интервале времени 2 ч, в точке передачи электрической энергии.
Для указанных показателей КЭ установлены следующие нормы: кратковременная доза фликера не должна превышать значения 1,38, длительная доза фликера не должна превышать значения 1,0 в течение 100% времени интервала в одну неделю.
При оценке соответствия электрической энергии нормам КЭ, относящимся к колебаниям напряжения, установленным в настоящем стандарте, должны быть проведены измерения по ГОСТ Р 51317.4.15, при этом маркированные данные не учитывают.
4.2.3.1 Одиночные быстрые изменения напряжения
Одиночные быстрые изменения напряжения вызываются, в основном, резкими изменениями нагрузки в электроустановках потребителей, переключениями в системе либо неисправностями и характеризуются быстрым переходом среднеквадратического значения напряжения от одного установившегося значения к другому.
Обычно одиночные быстрые изменения напряжения не превышают 5% в электрических сетях низкого напряжения и 4% - в электрических сетях среднего напряжения, но иногда изменения напряжения с малой продолжительностью до 10% и до 6% соответственно могут происходить несколько раз в день.
Если напряжение во время изменения пересекает пороговое значение начала провала напряжения или перенапряжения, одиночное быстрое изменение напряжения классифицируют как провал напряжения или перенапряжение.
4.2.4 Несинусоидальность напряжения
4.2.4.1 Гармонические составляющие напряжения
Гармонические составляющие напряжения обусловлены, как правило, нелинейными нагрузками пользователей электрических сетей, подключаемыми к электрическим сетям различного напряжения. Гармонические токи, протекающие в электрических сетях, создают падения напряжений на полных сопротивлениях электрических сетей. Гармонические токи, полные сопротивления электрических сетей и, следовательно, напряжения гармонических составляющих в точках передачи электрической энергии изменяются во времени.
Показателями КЭ, относящимися к гармоническим составляющим напряжения, являются:
- значения коэффициентов гармонических составляющих напряжения до 40-го порядка в процентах напряжения основной гармонической составляющей в точке передачи электрической энергии;
- значение суммарного коэффициента гармонических составляющих напряжения (отношения среднеквадратического значения суммы всех гармонических составляющих до 40-го порядка к средне-квадратическому значению основной составляющей) , %, в точке передачи электрической энергии.
Для указанных показателей КЭ установлены следующие нормы:
а) значения коэффициентов гармонических составляющих напряжения усредненные в интервале времени 10 мин, не должны превышать значений, установленных в таблицах 1-3, в течение 95% времени интервала в одну неделю;
б) значения коэффициентов гармонических составляющих напряжения , усредненные в интервале времени 10 мин, не должны превышать значений, установленных в таблицах 1-3, увеличенных в 1,5 раза, в течение 100% времени каждого периода в одну неделю;
в) значения суммарных коэффициентов гармонических составляющих напряжения , усредненные в интервале времени 10 мин, не должны превышать значений, установленных в таблице 4, в течение 95% времени интервала в одну неделю;
г) значения суммарных коэффициентов гармонических составляющих напряжения , усредненные в интервале времени 10 мин, не должны превышать значений, установленных в таблице 5, в течение 100% времени интервала в одну неделю.
Измерения напряжения гармонических составляющих должны быть проведены в соответствии с требованиями ГОСТ Р 51317.4.7, класс I, в интервалах времени 10 периодов без промежутков между интервалами с последующим усреднением в интервале времени 10 мин. В качестве результатов измерений в интервалах времени 10 периодов должны быть применены гармонические подгруппы по ГОСТ Р 51317.4.7, подраздел 3.2.
В качестве суммарных коэффициентов гармонических составляющих напряжения должны быть применены суммарные коэффициенты гармонических подгрупп по ГОСТ Р 51317.4.7, подраздел 3.3.
Таблица 1 - Значения коэффициентов нечетных гармонических составляющих напряжения, не кратных трем [см. 4.2.4.1, перечисления а), б)]
Порядок гармонической составляющей n | Значения коэффициентов гармонических составляющих напряжения , % для напряжения электрической сети | |||
0,38 кВ | 6-25 кВ | 35 кВ | 110-220 кВ | |
5 | 6 | 4 | 3 | 1,5 |
7 | 5 | 3 | 2,5 | 1 |
11 | 3,5 | 2 | 2 | 1 |
13 | 3,0 | 2 | 1,5 | 0,7 |
17 | 2,0 | 1,5 | 1 | 0,5 |
19 | 1,5 | 1 | 1 | 0,4 |
23 | 1,5 | 1 | 1 | 0,4 |
25 | 1,5 | 1 | 1 | 0,4 |
>25 | - | - | - | - |
Таблица 2 - Значения коэффициентов нечетных гармонических составляющих напряжения, кратных трем [см. 4.2.4.1, перечисления а), б)]
Порядок гармонической составляющей n | Значения коэффициентов напряжения гармонических составляющих % для напряжения электрической сети | |||
0,38 кВ | 6-25 кВ | 35 кВ | 110-220 кВ | |
3 | 5 | 3 | 3 | 1,5 |
9 | 1,5 | 1 | 1 | 0,4 |
15 | 0,3 | 0,3 | 0,3 | 0,2 |
21 | 0,2 | 0,2 | 0,2 | 0,2 |
>21 | 0,2 | 0,2 | 0,2 | 0,2 |
Таблица 3 - Значения коэффициентов напряжения четных гармонических составляющих [см. 4.2.4.1, перечисления а), б)]
Порядок гармонической составляющей n | Значения коэффициентов гармонических составляющих напряжения , % , для напряжения электрической сети | |||
0,38 кВ | 6-25 кВ | 35 кВ | 110-220 кВ | |
2 | 2 | 1,5 | 1 | 0,5 |
4 | 1 | 0,7 | 0,5 | 0,3 |
6 | 0,5 | 0,3 | 0,3 | 0,2 |
8 | 0,5 | 0,3 | 0,3 | 0,2 |
10 | 0,5 | 0,3 | 0,3 | 0,2 |
12 | 0,2 | 0,2 | 0,2 | 0,2 |
>12 | 0,2 | 0,2 | 0,2 | - |
Таблица 4 - Значения суммарных коэффициентов гармонических составляющих напряжения [см. 4.2.4.1, перечисление в)]
Значения суммарных коэффициентов гармонических составляющих напряжения , %, для напряжения электрической сети | |||
0,38 кВ | 6-25 кВ | 35 кВ | 110-220 кВ |
8,0 | 5,0 | 4,0 | 2,0 |
Таблица 5 - Значения суммарных коэффициентов гармонических составляющих напряжения [см. 4.2.4.1, перечисление г)]
Значения суммарных коэффициентов гармонических составляющих напряжения , %, для напряжения электрической сети | |||
0,38 кВ | 6-25 кВ | 35 кВ | 110-220 кВ |
12,0 | 8,0 | 6,0 | 3,0 |
При оценке соответствия электрической энергии нормам КЭ, относящимся к гармоническим составляющим напряжения, установленным в настоящем стандарте, маркированные данные не учитывают.
4.2.4.2 Интергармонические составляющие напряжения
Уровень интергармонических составляющих напряжения электропитания увеличивается в связи с применением в электроустановках частотных преобразователей и другого управляющего оборудования.
Допустимые уровни интергармонических составляющих напряжения электропитания находятся на рассмотрении.
4.2.5 Несимметрия напряжений в трехфазных системах
Несимметрия трехфазной системы напряжений обусловлена несимметричными нагрузками потребителей электрической энергии или несимметрией элементов электрической сети.
Показателями КЭ, относящимися к несимметрии напряжений в трехфазных системах, являются коэффициент несимметрии напряжений по обратной последовательности и коэффициент несимметрии напряжений по нулевой последовательности .
Для указанных показателей КЭ установлены следующие нормы:
- значения коэффициентов несимметрии напряжений по обратной последовательности и несимметрии напряжений по нулевой последовательности в точке передачи электрической энергии, усредненные в интервале времени 10 мин, не должны превышать 2% в течение 95% времени интервала в одну неделю;
- значения коэффициентов несимметрии напряжений по обратной последовательности и несимметрии напряжений по нулевой последовательности в точке передачи электрической энергии, усредненные в интервале времени 10 мин, не должны превышать 4% в течение 100% времени интервала в одну неделю.
При оценке соответствия электрической энергии нормам КЭ, относящимся к несимметрии напряжений, установленным в настоящем стандарте, должны быть проведены измерения по ГОСТ Р 51317.4.30, подраздел 5.7, класс А, при этом маркированные данные не учитывают.
4.2.6 Напряжения сигналов, передаваемых по электрическим сетям
Допустимые уровни напряжения сигналов, передаваемых по электрическим сетям, и методы оценки соответствия требованиям находятся на рассмотрении.
4.3 Случайные события
4.3.1 Прерывания напряжения
Прерывания напряжения относят к создаваемым преднамеренно, если пользователь электрической сети информирован о предстоящем прерывании напряжения, и к случайным, вызываемым длительными или кратковременными неисправностями, обусловленными, в основном, внешними воздействиями, отказами оборудования или влиянием электромагнитных помех.
Создаваемые преднамеренно прерывания напряжения, как правило, обусловлены проведением запланированных работ в электрических сетях.
Случайные прерывания напряжения подразделяют на длительные (длительность более 3 мин) и кратковременные (длительность не более 3 мин).
Ежегодная частота длительных прерываний напряжения (длительностью более 3 мин) в значительной степени зависит от особенностей системы электроснабжения (в первую очередь, применения кабельных или воздушных линий) и климатических условий. Кратковременные прерывания напряжения наиболее вероятны при их длительности менее нескольких секунд.
В трехфазных системах электроснабжения к прерываниям напряжения относят ситуацию, при которой напряжение меньше 5% опорного напряжения во всех фазах. Если напряжение меньше 5% опорного напряжения не во всех фазах, ситуацию рассматривают как провал напряжения.
Характеристики кратковременных прерываний напряжения приведены в приложении А.
4.3.2 Провалы напряжения и перенапряжения
4.3.2.1 Провалы напряжения
Провалы напряжения обычно происходят из-за неисправностей в электрических сетях или в электроустановках потребителей, а также при подключении мощной нагрузки.
Провал напряжения, как правило, связан с возникновением и окончанием короткого замыкания или иного резкого возрастания тока в системе или электроустановке, подключенной к электрической сети. В соответствии с требованиями настоящего стандарта провал напряжения рассматривается как электромагнитная помеха, интенсивность которой определяется как напряжением, так и длительностью.
В трехфазных системах электроснабжения за начало провала напряжения принимают момент, когда напряжение хотя бы в одной из фаз падает ниже порогового значения начала провала напряжения, за окончание провала напряжения принимают момент, когда напряжение во всех фазах возрастает выше порогового значения окончания провала напряжения.
Длительность провала напряжения может составлять от 10 мс до 1 мин.
4.3.2.2 Перенапряжения
Перенапряжения, как правило, вызываются переключениями и отключениями нагрузки. Перенапряжения могут возникать между фазными проводниками или между фазными и защитным проводниками. В зависимости от устройства заземления короткие замыкания на землю могут также приводить к возникновению перенапряжения между фазными и нейтральным проводниками. В соответствии с требованиями настоящего стандарта перенапряжения рассматриваются как электромагнитная помеха, интенсивность которой определяется как напряжением, так и длительностью.
Характеристики перенапряжений приведены в приложении А.
4.3.2.3 Определение и оценка провалов напряжения и перенапряжений
Оба явления - провалы и перенапряжения - непредсказуемы и в значительной степени случайны. Частота возникновения их зависит от типа системы электроснабжения, точки наблюдения, времени года.
Характеристики провалов напряжения и перенапряжений, а также данные об определении и оценке их приведены в приложении А.
4.3.3 Импульсные напряжения
Импульсные напряжения в точке передачи электрической энергии пользователю электрической сети вызываются, в основном, молниевыми разрядами или процессами коммутации в электрической сети или электроустановке потребителя электрической энергии. Время нарастания импульсных напряжений может изменяться в широких пределах (от значений менее 1 мкс до нескольких мс).
Импульсные напряжения, вызванные молниевыми разрядами, в основном имеют большие амплитуды, но меньшие значения энергии, чем импульсные напряжения, вызванные коммутационными процессами, характеризующимися, как правило, большей длительностью.
Значения импульсных напряжений в электрических сетях низкого, среднего и высокого напряжения приведены в приложении Б.
Приложение А
(справочное)
Характеристики провалов, прерываний напряжения и перенапряжений в электрических сетях
А.1 Провалы и прерывания напряжения
Провалы и прерывания напряжения классифицируют в соответствии с [1] (см. таблицу А.1). Цифры, помещаемые в ячейки таблицы, отражают число соответствующих событий.
Провалы и прерывания напряжения измеряют в соответствии с ГОСТ Р 51317.4.30 на основе измерений среднеквадратических значений напряжения, обновляемых для каждого полупериода. Параметрами провалов, прерываний напряжения, являющихся объектами рассмотрения в настоящем стандарте, являются остаточное напряжение (максимальное действующее напряжение для провалов и прерываний) и длительность.
В электрических сетях низкого напряжения, четырехпроводных трехфазных системах учитывают фазные напряжения; в трехпроводных трехфазных системах учитывают линейные напряжения; в случае однофазного подключения учитывают питающее напряжение (фазное или линейное в соответствии с подключением потребителя).
Пороговое напряжение начала провала и прерывания принимают равным 90% опорного напряжения.
Примечание - При измерениях в многофазных системах рекомендуется определять и записывать число фаз, затрагиваемых каждым событием.
Для электрических сетей трехфазных систем следует использовать многофазное сведение данных, которое заключается в определении эквивалентного события, характеризующегося одной длительностью и одним остаточным напряжением.
Результаты измерений характеристик провалов и прерываний напряжения в электрических сетях по данным [1] приведены в таблицах А.2 и А.3.
А.2 Перенапряжения
Перенапряжения измеряют в соответствии с ГОСТ Р 51317.4.30, подраздел 5.4, на основе измерений среднеквадратических значений напряжения, обновляемых для каждого полупериода. Пороговое напряжение начала перенапряжения принимают равным 110% опорного напряжения.
В среднем за год в точке присоединения возможны около 30 перенапряжений. При обрыве нулевого проводника в трехфазных электрических сетях напряжением до 1 кВ, работающих с глухо заземленной нейтралью, возникают временные перенапряжения между фазой и землей. Уровень таких перенапряжений при значительной несимметрии фазных нагрузок может достигать значений линейного напряжения, а длительность - нескольких часов.
В системах низкого напряжения, при определенных обстоятельствах, неисправность, произошедшая электрически выше трансформатора, может породить временные перенапряжения на стороне низкого напряжения на время, в течение которого протекает ток, вызванный неисправностью. Такие перенапряжения в общем случае не превышают 1,5 кВ.
Для систем среднего напряжения ожидаемое значение такого перенапряжения зависит от типа заземления в системе. В системах с жестко заземленной нейтралью или с заземлением нейтрали через сопротивление значение перенапряжения обычно не превышает . В системах с изолированной нейтралью или с заземлением нейтрали через реактор значение перенапряжения обычно не превышает . Тип заземления указывается оператором сети.
Таблица А.1 - Классификация провалов и прерываний напряжения по остаточному напряжению и длительности
Остаточное напряжение u, % опорного напряжения | Длительность провала (прерывания) напряжения , с | ||||||||
Примечания 1 Данные по прерываниям напряжения вносят в последнюю строку таблицы в соответствии с 4.3.1. 2 Для существующего измерительного оборудования и систем диспетчеризации таблицу А.1 принимают в качестве рекомендации. |
Таблица А.2 - Результаты измерений характеристик провалов и прерываний напряжения для кабельных электрических сетей
Остаточное напряжение u, % опорного напряжения | Длительность провала (прерывания) напряжения , с | |||||
63 | 38 | 8 | 1 | 1 | 0 | |
8 | 29 | 4 | 0 | 0 | 0 | |
6 | 17 | 1 | 3 | 0 | 0 | |
u=0 | 1 | 1 | 2 | 1 | 1 | 10 |
Таблица А.3 - Результаты измерений характеристик провалов и прерываний напряжения для смешанных (кабельных и воздушных) электрических сетей
Остаточное напряжение u, % опорного напряжения | Длительность провала (прерывания) напряжения , с | |||||
111 | 99 | 20 | 8 | 3 | 1 | |
50 | 59 | 14 | 3 | 1 | 0 | |
5 | 26 | 11 | 4 | 1 | 1 | |
u=0 | 5 | 25 | 104 | 10 | 15 | 24 |
Приложение Б
(справочное)
Значения импульсных напряжений в точках общего присоединения, вызываемых молниевыми разрядами и процессами коммутации
Расчетные значения импульсных напряжений, вызываемых молниевыми разрядами в точках присоединения к электрической сети, показанных на рисунке Б.1, приведены для фазных номинальных напряжений сети и справедливы при условии, что распределительные устройства и линии электропередачи в электрических сетях и электроустановках потребителя выполнены в соответствии с [2].
Формы импульсов, характерные для точек присоединения на рисунке Б.1, показаны на рисунках Б.2 - Б.4.
Значения импульсных напряжений, вызываемых молниевыми разрядами в точках присоединения к электрической сети, показанных на рисунке Б.1, приведены в таблице Б.1.
Таблица Б.1 - Значения импульсных напряжений, вызываемых молниевыми разрядами, кВ
Место расположения точек присоединения | Варианты точек на рисунке Б.1 | Номинальное напряжение электрической сети, кВ | |||||
0,38 | 6 | 10 | 35 | 110 | 220 | ||
Воздушная линия (ВЛ) | а, с | *(5) | 100 | 125 | 325 | 800 | 1580 |
b*(1) | - | 160 ------ 2000 | 190 ------ 2000 | 575 ------ 2000 | 1200 ------ 2000 | 2400 | |
Кабельная линия (КЛ) | d | *(5) | 100 | 125 | 325 | 800 | 1580 |
l*(2) | - | 34 | 48 | 140 | 350 | 660 | |
е, k *(3) | - | - | - | - | - | - | |
Силовой трансформатор (Tр) | f, g, n *(4) | - | 60 | 80 | 200 | 480 | 750 |
m | - | 34 | 48 | 140 | 350 | 660 | |
*(1) В варианте точек присоединения b в числителе указано импульсное напряжение на металлических и железобетонных опорах, в знаменателе - на деревянных опорах. *(2) Импульсные напряжения в точке присоединения l соответствуют случаю отсутствия воздушной линии электропередачи на стороне вторичного напряжения трансформатора (см. рисунок Б.1) и значениям напряжений обмоток , , соответствующим двум номинальным напряжениям, расположенным рядом в шкале стандартных напряжений (например, 35 и 10 кВ, 110 и 220 кВ). При других сочетаниях номинальных напряжений (например, 110 и 10 кВ, 35 и 6 кВ и т.д.) импульсные напряжения, проходящие через обмотки трансформатора, меньше указанных значений. *(3) При наличии на распределительной подстанции типа РП-Б, РП-В (см. рисунок Б.1) воздушных линий электропередачи значения импульсных напряжений в точках присоединения e и k такие же, как в варианте точек присоединения d и с. При отсутствии на распределительной подстанции типа РП-Б, РП-В воздушных линий электропередачи импульсные напряжения в точках присоединения e и k определяются значениями импульсных напряжений в начале кабельной линии (точки d и l), уменьшенными в соответствии с данными по затуханию грозовых импульсов в кабельных линиях в зависимости от длины линии. *(4) Указанные в данной строке значения импульсных напряжений справедливы при условии расположения точек общего присоединения f, g, n на вводах силового трансформатора и наличии связи рассматриваемой обмотки с воздушной линией. При отсутствии связи (точка m на рисунке Б.1) импульсные напряжения соответствуют точке присоединения l. *(5) Значения импульсных напряжений с вероятностью 90% не превышают 10 кВ - в воздушной сети напряжением 0,38 кВ и 6 кВ - во внутренней проводке зданий и сооружений. |
Значения коммутационных импульсных напряжений при их длительности на уровне 0,5 амплитуды импульса, равной 1000 - 5000 мкс, приведены в таблице Б.2.
Таблица Б.2 - Значения коммутационных импульсных напряжений
Номинальное напряжение электрической сети, кВ | 0,38 | 3 | 6 | 10 | 20 | 35 | 110 | 220 |
Коммутационное импульсное напряжение, кВ | 4,5 | 15,5 | 27 | 43 | 85,5 | 148 | 363 | 705 |
Вероятность превышения значений коммутационных импульсных напряжений, указанных в таблице Б.2, составляет не более 5%, а значений импульсных напряжений, вызываемых молниевыми разрядами (см. таблицу Б.1) - не более 10% для воздушных линий с металлическими и железобетонными опорами и 20% - для воздушных линий с деревянными опорами.
Значения импульсных напряжений, вызываемых молниевыми разрядами в электрической сети потребителя, могут превышать указанные в таблице Б.1 значения за счет молниевых поражений в самой сети потребителя, отражений и преломлений импульсов в сети потребителя и частично - за счет разброса параметров импульсов.
Библиография
[1] МЭК 61000-2-8: 2002 | Электромагнитная совместимость (ЭМС). Часть 2-8. Электромагнитная обстановка. Провалы и кратковременные прерывания напряжения в общественных системах электроснабжения со статистическими результатами измерений |
(IEC 61000-2-8: 2002) | (Electromagnetic compatibility (EMC) - Part 2-8: Environment - Voltage dips, short interruptions on public electric power supply system with statistical measurement results) |
[2] Правила устройства электроустановок. Издания 6, 7. Министерство энергетики Российской Федерации